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USER-DRIVEN VIDEO COLORIZATION SYSTEM DEVELOPMENT
USING GENERATIVE ADVERSARIAL NEURAL NETWORK

The article presents a method and software for automated video colorization using deep learning algorithms.
The challenge of automated colorization lies in predicting the color channel values for each frame based on
input brightness values (L channel in the Lab color model) while ensuring spatio-temporal consistency. The
goal of this research is to develop a software system that integrates user input for color palette adjustments
and ensures color consistency across frames.

The proposed method implements a two-stage process: colorizing keyframes using a Generative Adversarial
Network (GAN) with U-Net-based generator and colorizing intermediate frames using keyframes and
previously colorized frames as references. The use of a Generative Adversarial Network with U-Net-based
generator is justified by its ability to effectively capture fine-grained details and global context, ensuring
high-quality, realistic colorization with improved spatial precision and temporal consistency. To enhance the
quality of the results, contextual losses, temporal consistency losses, and smoothness losses are applied. The
proposed method was implemented using the Python programming language with TensorFlow, a deep learning
framework, for building and training the model.

The developed software integrates user input in the form of color hints for keyframes, enabling the creation
of customized color solutions. A distinctive feature of the proposed system is the use of an adaptive approach
for determining keyframes based on a threshold SSIM value (0.4). This ensures efficient processing of large

volumes of video data while maintaining temporal color consistency.

Experiments demonstrated the high quality of the system's performance, with an average LI loss of
0.016+0.003 and SSIM of 0.93+0.1 on the training dataset.

Future research focuses on improving temporal consistency losses to achieve real-time efficiency. This
would enable the proposed solution to be applied in areas such as filmmaking, the media industry, and the

automation of old video restoration processes.

Key words: software, automated video colorization, deep learning, generative adversarial networks, GAN,
contextual losses, spatio-temporal consistency, color palette adjustments.

Introduction. Problem statement. Automated
video colorization is a transformative technology that
minimizes the substantial manual effort traditionally
required for assigning colors to grayscale videos.
This process involves using computational methods
to predict color channel values for every frame in
a video sequence. Depending on the color model
employed, these color channels could be in RGB
format or in the chromatic channels (a and b) of the
Lab color model. This process must maintain both
spatial consistency — ensuring accurate and natural
color representation within each individual frame —
and temporal consistency, which ensures smooth and
coherent color transitions between consecutive
frames in a sequence.

The Lab color model, widely adopted in
colorization tasks, separates color representation
into three distinct components: L, a, and b. The L

component represents the lightness or brightness of
a color and is directly linked to grayscale intensity.
The a channel measures the color range from green
to red, while the b channel captures the range from
blue to yellow. In video colorization, the grayscale
information provided by the L channel serves as
the foundation for predicting the values of the a
and b channels, effectively reconstructing the color
information for each frame. The challenge lies in
ensuring that the reconstructed colors are visually
natural, spatially consistent within each frame, and
temporally consistent across the entire video.

To evaluate the effectiveness of video colorization
models, several metrics are commonly utilized.
Among these, L1 and L2 losses measure the numerical
difference between predicted and actual color values,
providing a quantitative assessment of accuracy.
Structural similarity index (SSIM) evaluates the
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perceptual similarity between the colorized output
and the ground truth, capturing how natural the result
appears to the human eye. Temporal loss specifically
assesses the stability of color transitions across frames,
while subjective metrics, such as human evaluation,
gauge the overall visual appeal and realism of the
generated video.

Automated video colorization methods can be
broadly categorized into three groups: user-input-
based, example-based, and fully automatic approaches.
User-input-based methods rely on human-provided
hints, such as scribbles or color strokes, to guide the
colorization process. Example-based methods use
reference images or videos to transfer colors to the
target frames. Fully automatic methods, on the other
hand, require no external input, relying entirely on the
model to infer appropriate colors. Despite its promise,
fully automatic colorization poses a significant
challenge due to the inherent multimodality of the
task: a single grayscale frame may correspond to
multiple plausible colorizations, making it difficult
for the model to decide on a single correct output.

The objective of this research is to develop an
innovative video colorization system that integrates
user input to enable customizable color palettes and
enhance control over the final output. By leveraging
user-provided guidance, the system strikes a balance
between automation and creative flexibility. The
proposed system is rigorously evaluated using
quantitative metrics, such as L1 loss and SSIM, to
ensure high-quality results.

The research explores strategies to improve
temporal consistency loss, a crucial aspect for
achieving smooth and coherent color transitions
across frames. These advancements aim to optimize
the system for real-time applications in fields like
film production, media post-processing, and the
restoration of archival video footage.

Related research. The RGB color model is one
of the most commonly used color representations
in computer vision. It has a significant limitation:
the interdependence of its channels makes it
impossible to reconstruct one channel based on the
others, leading to challenges in interpretability [1].
On the other hand, the Lab color model provides
a distinct advantage by separating luminance (L)
from chromatic information. In the Lab model, the
L channel represents brightness, while the a and b
channels capture color ranges (green-to-red and blue-
to-yellow, respectively). This separation simplifies
colorization tasks, as predicting two chromatic
channels (a and b) based on the luminance channel
(L) is computationally more efficient compared to
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predicting all three RGB channels. Transforming
between RGB and Lab involves non-linear operations,
which can result in data loss during model training.
Similarly, the YUV model also separates chroma and
luminance while employing a linear transformation
from RGB. Despite this linearity, YUV models can
produce unexpected artifacts, such as color stains,
reducing their reliability for automated colorization
tasks [2]. As a result, the Lab color model remains
the preferred choice for tasks requiring accurate and
consistent automatic colorization.

Early approaches to video and image colorization
heavily relied on user input to guide the process. These
initial algorithms used color hints, such as user-drawn
scribbles, and propagated the color to adjacent regions
based on pixel intensity and texture similarities [3].
Over time, advancements were made to improve the
effectiveness of these methods. For instance, research
[4] introduced a convolutional neural network (CNN)
for automatic colorization. While CNN-based methods
generally outperformed non-deep-learning techniques
in terms of color accuracy and quality, they occasionally
struggled with color bleeding into unrelated regions of
a frame [5]. To address this issue, the Hybrid Scribble
Propagation algorithm [6] was proposed. This method
combines permeability-guided filtering (PGF) and an
innovative entropy metric to ensure color is propagated
only within the intended regions, preventing color
mixing between distinct objects.

Example-based colorization methods, also known
as reference-based techniques, use a reference image
or video to transfer colors to grayscale frames. For
instance, the VCGAN model described in [7] utilizes
a generative adversarial network (GAN) to achieve
example-based video colorization. The discriminator
in VCGAN employs a PatchGAN architecture with
fewer parameters to optimize performance, while
the generator is based on a U-Net architecture. Two
ResNet-50-IN feature extractors are integrated into
the generator — one processes the input grayscale
frame to extract high-level features, and the other
processes the previous frame to ensure temporal
consistency. The outputs from these networks are then
combined to produce the final colorized frame. The
authors implemented a two-stage training process:
first, they pre-trained the model on the ImageNet
dataset to establish robust initial weights; second,
they fine-tuned the model on video datasets to ensure
both spatial and temporal coherence.

In another study [8], researchers developed a
multi-GAN approach to tackle the complexity of
video colorization. This technique divides frames
into regions based on pixel intensity, creating two
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primary classes: C1 for low-intensity regions and
C2 for high-intensity regions. The C2 class is further
split into clusters, each processed by a separate
GAN. By breaking down the task into smaller, more
manageable segments, this approach achieved more
accurate results for visually complex images and
videos. To maintain visual harmony across frames,
the authors proposed a technique where each region
"inherits" its primary color from the corresponding
region in the previous frame. This strategy minimizes
significant color shifts across frames, improving the
overall temporal consistency.

Modern GAN-based techniques for video
colorization focus on enhancing both frame-
level quality and sequence-level consistency. One
approach employs a conditional GAN (cGAN) with
3D convolutions to evaluate the realism of individual
frames and the continuity of the entire sequence.
A new metric, termed Color Consistency, was
introduced to measure the stability of colors across
consecutive frames. Another innovative framework
uses two networks, referred to as "f' and "g," to
address the one-to-many nature of video colorization.
Network f generates multiple plausible colorizations
for a given frame, producing four distinct solutions
in parallel. Network g refines these outputs by taking
into account temporal inconsistencies, guided by
confidence maps. These confidence maps quantify
the degree of temporal mismatch between adjacent
frames, with values ranging from 0 (low consistency)
to 1 (high consistency). The g network adjusts the
colors to reinforce consistency across the video. This

Gray-scale
video sequence

network can be applied iteratively during testing to
achieve even greater temporal harmony.

By incorporating advanced architectures and
innovative loss functions, these methods aim to
produce visually realistic and temporally consistent
colorized videos, paving the way for practical
applications in film restoration, media production,
and beyond.

Proposed method. The proposed software method
focuses on solving two primary issues in video
colorization: preserving temporal consistency and
generating visually realistic outputs that align with user
expectations. The video sequence is initially divided
into individual frames. The algorithm identifies the
keyframes, which are essentially the initial frames of
each scene. In the current implementation, keyframes
are determined by comparing the SSIM values between
consecutive frames. When the SSIM value of a frame
differs from the previous one by a margin exceeding a
predefined threshold (set experimentally at 0.4), that
frame is designated as the next keyframe (Fig. 1).

The unique feature of this framework lies in its
two-stage process: colorizing keyframes and then
filling in the remaining inner frames. Keyframes are
processed first using an image colorization network.
The inputs for the network include the grayscale
lightness channel (L channel) of the keyframe
(dimensions H x W x 1), user-provided color hints
(ab channels, dimensions H x W x 2), and a binary
mask indicating the locations where the user added
color suggestions (dimensions H x W x 1). Once
a keyframe is colorized, the video colorization
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* (L channel)
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Keyframe
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Previously colored Colored inner
l\ j Colored keyframe inner frame X(t-1) frame X(t)
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HxWx3 HxWx2 HxWx3

Fig. 1. A schema of the proposed software method

151



Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

network proceeds to process the inner frames within
each scene. For this task, the network relies on two
reference frames: the already colorized keyframe and
the most recently colorized inner frame. This strategy
ensures that both short-term and long-term temporal
consistency is maintained across the sequence. The
network generates predictions for the ab channels of
the current frame, which are then combined with its L
channel to reconstruct the complete colorized frame.

The framework allows for flexibility in the choice of
network architecture for image and video colorization. In
this implementation, a Generative Adversarial Network
(GAN) (Fig. 2) with a U-Net-based generator (Fig. 3)
is used to achieve high-quality results. Alternative
architectures, such as Vision Transformers or more
advanced GAN configurations, can also be utilized. The
video colorization process can be viewed as reference-
based image colorization with two reference inputs.
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To enhance the quality of the results, the proposed
method incorporates both contextual and temporal
consistency losses into the overall loss function for
training. Contextual loss is calculated as the mean
absolute difference between features extracted from the
original and predicted images, specifically using layers 2
to 5 of the VGG19 network. Temporal consistency
loss, on the other hand, penalizes discrepancies in
color propagation detected through optical flow. A
smoothness loss is introduced to promote the spatial
coherence of color transitions within each frame.

The developed software is built using a three-
tier architecture comprising a web-based client
application developed with Angular (TypeScript), a
web server powered by FastAPI (Python), and a data
layer housing the colorization models implemented
in TensorFlow (Python). This design ensures both
portability and scalability: the lightweight web
application is accessible from most devices, while
the web server supports multi-user scalability. The
neural networks can be utilized, trained, and tested
independently of the web application. A schematic
representation of the application architecture is
provided in the Fig. 4.

The model integrates a U-Net architecture with
attention mechanisms. The U-Net employs an
encoder-decoder structure: the encoder progressively
reduces the resolution of the input image, extracting
contextual features at multiple levels, while the
decoder restores the spatial resolution by upsampling
the feature maps. Skip connections are used to preserve
high-resolution details from the encoder. Alongside
the U-Net structure, the model incorporates spatial

and channel-wise attention mechanisms. Spatial
attention prioritizes regions in the feature maps based
on their spatial relevance, while channel attention
emphasizes key features by adjusting the importance
of individual channels in the feature maps. The
inclusion of attention mechanisms allows the network
to focus more effectively on color hints and distribute
them consistently across image regions.

Research results

The developed video colorization software system
incorporates a unique feature that allows users to
actively contribute to the colorization process by
providing input. Fig. 5 illustrates from left to right:
original RGB image, binary mask, color hints,
Lchannel with marks applied.

This approach enables the customization of color
palettes, making it possible to adapt the colorization
to specific user preferences or artistic requirements.
By integrating user guidance, the system achieves
greater flexibility and control over the final output,
ensuring that it meets both technical standards and
aesthetic expectations (Fig. 6, 7).

Following the completion of the training process,
the video colorization model demonstrates impressive
performance. It achievesan L1 loss value 0f0.016 with
a standard deviation of £0.003, indicating a high level
of accuracy in reconstructing pixel color values. The
network attains SSIM score of 0.93 with a deviation
of £0.1, signifying the system's capability to produce
visually coherent and detailed outputs. These metrics
were calculated using normalized pixel values within
the [0, 1] range, reflecting the model's robust ability
to handle the nuances of video colorization tasks.
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Fig. 4. 3-tier software architecture
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Fig. 5. Simulation of user input on training and testing images (adding color hints)
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Conclusions and future work. The developed
video colorization framework presents anovel solution
for enhancing the quality and usability of automated
video colorization. By integrating user input through
customizable color palettes and leveraging the Lab
color model, the method provides a robust balance
between automation and manual control. The dual-
stage process — keyframe colorization followed
by inner frame propagation —effectively addresses
the challenges of spatial and temporal consistency,
producing visually realistic and coherent results
across video sequences. The use of a GAN with a
U-Net-based generator, coupled with contextual and
temporal consistency losses, ensures high-quality
outputs that meet user expectations. The modular
design allows for flexibility in adopting alternative
architectures, such as transformers or advanced

GANSs, to further enhance results. The inclusion
of smoothness loss and temporal consistency
optimization makes the framework well-suited for
practical applications in film and media production,
where seamless colorization is critical.

Future improvements could focus on refining
temporal consistency and incorporating additional
user-guided features, such as region-specific coloring
or real-time preview capabilities. Expanding
the framework to include contextual factors like
scene transitions, object tracking, or semantic
understanding could enhance its applicability across
diverse use cases. The proposed method establishes
a strong foundation for integrating Al-driven video
colorization into creative workflows, offering a cost-
effective and efficient alternative to traditional manual
approaches.
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Ouemenxo JI.M., Tapeikina K.O. PO3POBKA KEPOBAHOI KOPUCTYBAYEM CUCTEMH
PO3®APBEOBYBAHHSI BIJIEO 3 BUKOPUCTAHHSM I'EHEPATUBHOI 3MATAJIBHOI
HEHPOHHOI MEPEXKI

Y emammi npeocmasneno memoo i npoepamue 3adesneuents OJisi A8MOMAMU308AHOL Kolopusayii 8ideo
3 GUKOPUCMAHHAM QAI20pummie 2iubokoeo nasyanwus. llpobnema asmomamusosanoi Koropuszayii nonseae
y nepedbauenHi 3HaueHb KONbOPOBUX KAHANIG OISl KOWCHO20 KAOPY HA OCHOBI BXIOHUX 3HAUEHb ACKPABOCMI
(xanan L 6 Konbopositi modeni Lab) i3 3abe3nevwennsim npocmoposo-4acoeoi yzeodaicenocmi. Memoio 0anoeo
00CNIOJNCEHHs. € PO3POOKA NPOSPAMHOL cucmemu, KA 003601UMb [THMe2PYysamit KOPUCMmy8aybKutl 68i0 O
HALAWMYBAHHs KOIbOPOBUX NANIMP ma 3a0e3neyysamu y3200H4CeHiCMb KONbopie Midc Kaopamu. 3anpono-
HOBAHUL MEMOO peanizye 080emantull npoyec: KoIopUu3ayito KInyos8ux Kaopie 3a 00NOM02010 2eHepamueHol
smazanvroi mepexci GAN (Generative Adversarial Network) i3 cenepamopom na ocrnogi U-Net i konopusayiio
BHYMPIUWHIX KAOPI8 I3 BUKOPUCIAHHAM KII0U08UX KAOPI8 Md NONEPeOHbO KOJIOPU30BAHUX KAOPIB K NOCUNAHD.
Bukopucmanns eenepamusnoi smazcanvnoi mepeoici iz eenepamopom na ocnogi U-Net ootpynmosane it 30am-
HicmIo ehexmueno 3axonniosamu OpioHi demani ma 2n1o06AIbHUL KOHMEKCM, 3a0e3neyyrouu AKIiCHY, peanic-
MUYHY KOIOPU3AYII0 3 HOKPAUEHOI0 NPOCMOPOB0I0 MOYHICIIO MA YACOB0I0 Y320024CeHICmI0. [ NOKpaujeHHs
AKOCMI pe3yibmamis 3acmoco8yombCs KOHMEKCMYalbHi 6Mpamu, 8Mpamu y3200H4CeHOCMI 8 4aci ma mpamu
321A0HCEHOCMI. 3anpOnOHOBAHULL MemOoO DYI0 peani308aHo 3a 0ONOMO20H0 MO8U npozpamysants Python i3
surxopucmanuim TensorFlow, gppetimeopky 01 21ub0K020 HABYAHHS, OISl CMBOPEHHS A HABUAHHS MOOEII.

Pospobnene npoepamne 3abesneuenns inmezspye 6 pobouull npoyec KOpUucmyeaybke 66e0eHHsA y 8UIA0I
KOIbOPOBUX NIOKA30K O] KAKYOBUX KAOPI8, WO 003605A€ CIBOPIOSAMU KACMOMI308AHI KOJIbOPOSI PIULeHHS.
Biominnoro pucoro 3anpononosanoi cucmemu € BUKOPUCMAHHS A0ANMOBAHO20 NIOX00Y 00 USHAYEHHS K010~
8UxX Kaopie, wjo basyemovcs Ha nopo2ogomy 3uauenti SSIM (0.4). Lle 3abe3neuye epexmusHy oOpoOKy enuxux
06cszie 8i0eo0anux, 30epicarouu yacosy nociioo8Hicmy Konbopis. [Iposederi excnepumernmu npooemoHCmpy-
8a/1U BUCOKY AKICMb pobomu cucmemu, 30Kkpema, cepeore 3uavenns empam L1 cknano 0.016+£0.003, a SSIM
—0.93%0.1 na naguanvHomy HaOOPi OAHUX.

THooanvwii 0ocniodceH s CNPAMOBAHT HA NOKPAWEHHS 8MPAM Y3200H4CEHOCMI 8 YAci O/ 00CACHEHHs. ehex-
mueHocmi 8 peaivHomy uaci. Lle 003601ums UKOPUCHOBY8AMU 3aNPONOHOBAHE DIUEHH Y MAKUX chepax,
AK KIHOBUPOOHUYMBO, MeOIiaiHOYCMpIin ma agmomMamu3ayis npoyecie 8i0H0GIEeHHs CMApUx 8ideomamepiais.

Knrouosi cnosa: npocpamne 3ab6e3neuents, agmomMamu308ana Koiopuzayis ideo, 21uboKe HABUAHHS,
2eHepamueri smazanvri mepedci, GAN, KoHmeKcmyanvui 6mpamu, NPOCMOPO8O-4aco8a Y3200HCEHICMb, HANA-
WIMYBAHHS KOLbOPOBUX NALIMP.
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